¹²C(¹²C, ¹²C),(¹²C,X) **2009Da22,2016Ka37** | | History | | | |-----------------|--|--------------------|------------------------| | Type | Author | Citation | Literature Cutoff Date | | Full Evaluation | J. H. Kelley, J. E. Purcell and C. G. Shen | NP A968, 71 (2017) | 1-Jan-2017 | 2009Da22: 12 C(12 C, 12 C') E=120,139.5,159 MeV, analyzed elastic and inelastic $\sigma(\theta)$ using diffraction model; deduced nuclear rms radii 2016Ka37: XUNDL dataset compiled by TUNL, 2017. The authors carried out a systematic study of the charge changing cross sections of \approx 900 MeV/A carbon isotopes on a carbon target and analyzed the data to obtain the proton and matter radii of $^{12-19}$ C. A beam of 937 MeV/A 12 C ions was produced by fragmenting either a 1 GeV/A 20 Ne beam or 1 GeV/A 40 Ar beam on a thick beryllium target at the GSI/FRS facility. After magnetic separation, the 12 C beam particles were identified event-by-event using a multi-sampling ionization chamber and the time-of-flight between two scintillators. The beam then passed through a thick carbon target before being reanalyzed in a second multi-sampling ionization chamber that measured the Z of ions after the target. In the analysis, the ratio of the charge changing events to the non-charge changing events was determined and used to obtain σ_{α} , the charge changing cross section. For 12 C, σ_{α} =733 mb 7 was determined. The data were then compared with a finite-range Glauber model to obtain root-mean-square radii for the proton distribution and for the matter distribution. The results from the systematic study across ^{12–19}C is then compared with various models and comments are given on the development of neutron skins and neutron halos. ## ¹²C Levels | E(level) | $J^{\pi \dagger}$ | Comments | |---------------------------------------|-------------------|--| | 0 | 0+ | R _{r.m.s.} = 2.32 fm 2, R _{r.m.s.} = 2.35 fm 2 (2016Ka37). | | 4.44×10^3 | | R _{r.m.s.} =2.34 fm (2009Da22).
R _{r.m.s.} =2.36 fm 4 (2009Da22). | | 7.65×10^3 | | R _{r.m.s.} =2.89 fm 4 (2009Da22). | | 9.64×10^3 14.1×10^3 | | $R_{r.m.s.}$ =2.88 fm 11 (2009Da22). | | 18.5×10^3 | | | | 19.6×10^3 | | | [†] From Adopted Levels.